Highly Active Cellulose-Supported Poly(hydroxamic acid)–Cu(II) Complex for Ullmann Etherification

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reductive Ullmann Coupling of Aryl Halides by Palladium Nanoparticles Supported on Cellulose, a Recoverable Heterogeneous Catalyst

Palladium nanoparticles supported on cellulose were prepared without using any reducing agent and used as a highly efficient catalyst for the Ullmann reductive coupling of aryl halides in the presence of zinc, in a water-alcohol mixture as solvent in air. The obtained palladium nanoparticles were characterized by scanning electron microscopy (SEM), FTIR, thermogravimetric analysis (TGA) and ICP...

متن کامل

Copolymerization of ethylene with α-olefins over highly active supported Ziegler-Natta catalyst with vanadium active component

The new highly active supported vanadium-magnesium catalyst (VMC) has been studied in α-olefin (1-butene, 1-hexene)/ ethylene copolymerization in the presence of hydrogen. Data on the effect of α-olefin/ethylene ratio in copolymerization on the content of branchings in copolymers, kinetic profile, copolymer yield, molecular weight and molecular weight distribution of copolymers have been obtain...

متن کامل

Graphene-supported hemin as a highly active biomimetic oxidation catalyst.

Well supported: stable hemin-graphene conjugates formed by immobilization of monomeric hemin on graphene, showed excellent catalytic activity, more than 10 times better than that of the recently developed hemin-hydrogel system and 100 times better than that of unsupported hemin. The catalysts also showed excellent binding affinities and catalytic efficiencies approaching that of natural enzymes.

متن کامل

Graphene oxide for cellulose hydrolysis: how it works as a highly active catalyst?

Graphene oxide (GO-ene), the two-dimensional carbon lattice decorated by abundant oxygen functionalities, is demonstrated as an efficient green catalyst towards selective hydrolysis of cellulose to glucose. The synergy of its carboxylic/phenolic groups and its layered, soft structure rendered GO-ene superior hydrolytic activity.

متن کامل

Nano-BF3/cellulose as a biodegradable novel catalyst for synthesis of highly functionalized tetrahydropyridines

Nano-cellulose with high amount of free OH groups could be used as supporting agents for boron trifluoride (BF3). Nano-BF3/cellulose is a solid acid and a biodegradable catalyst which was prepared via reaction of nano-cellulose and BF3. The structure of this catalyst was studied by FT-IR, FESEM, TEM, XRD, EDS, TGA, XRF and BET. In this research, the synthesis of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACS Omega

سال: 2021

ISSN: 2470-1343,2470-1343

DOI: 10.1021/acsomega.0c05840